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ABSTRACT

Air pollution is a global threat to public health, especially when considering susceptible populations,
such as children. A better understanding of determinants of exposure could help epidemiologists in
refining exposure assessment methods, and policy makers in identifying effective mitigation in-
terventions. Through a participatory approach, 73 and 89 schoolchildren were involved in a two-season
personal exposure monitoring campaign of equivalent black carbon (EBC) in Milan, Italy. GPS devices,
time-activity diaries and a questionnaire were used to collect personal information. Exposure to EBC was
1.3+15 ug/rn3 and 39 +3.3 ug/m3 (mean =+ sd) during the warm and the cold season, respectively. The
highest peaks of exposure were detected during the home-to-school commute. Children received most of
their daily dose at school and home (82%), but the highest dose/time intensity was related to trans-
portation and outdoor environments. Linear mixed-effect models showed that meteorological variables
were the most influencing predictors of personal exposure and inhaled dose, especially in the cold
season. The total time spent in a car, duration of the home-to-school commute, and smoking habits of
parents were important predictors as well. Our findings suggest that seasonality, time-activity and
mobility patterns play an important role in explaining exposure patterns. Furthermore, by highlighting
the contribution of traffic rush hours, transport-related microenvironments and traffic-related pre-
dictors, our study suggests that acting on a local scale could be an effective way of lowering personal

exposure to EBC and inhaled dose of children in the city of Milan.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

decade, numerous studies suggested significant associations be-
tween exposure to ambient air pollution and a broad spectrum of

Ambient and household air pollution are currently recognized
as one of the main public health concerns worldwide (WHO 2018a,
b). It does not affect the whole population in the same way; a larger
impact is reported in the most susceptible subgroups (Makri and
Stilianakis 2008). In particular, children are among the most
affected as they breathe closer to the source (i.e. exhaust pipes of
vehicles), they are generally more active than adults, present higher
respiratory and metabolic rates, and their immune system is not
completely developed (Bateson and Schwartz 2008). In the last
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adverse health effects in children (Perera, 2017; Rojas Rueda et al.,
2019). At the 2018 Global Conference on Air Pollution and Health,
the World Health Organization (WHO) has called on policy makers,
researchers and health practitioners to strengthen the actions to
protect children and enhance education on air pollution as a key
factor for improving health and quality of life (WHO 2018a, b).
This applies to Italy where more than 98% of children are
exposed to PM2.5 concentrations above the annual average
guideline value of 10 pg/m> (WHO 2018a, b), and more specifically
to the Po Valley region, which is among the most densely popu-
lated, motorized, industrialized, and polluted areas in Europe
(EUROSTAT 2019; EEA, 2018). In this region, Greater Milan is the
biggest urban area, with approximately 3.2 million inhabitants.
Among the airborne contaminants black carbon (BC) represents
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primary fine and ultrafine particles strictly linked with fossil fuel
and biomass combustion (U.S.EPA 2012). It can overcome human
membranes and reach the circulatory system, brain, and even the
fetal side of the placenta (Brockmeyer and D’Angiulli 2016; Bové
et al., 2019), operating as a carrier of harmful chemical compo-
nents (Dachs and Eisenreich, 2000). Since it is well known as a
suitable marker to study the impact of air pollution on health
(Janssen et al., 2011), increasing the knowledge on personal expo-
sure to BC has become a matter of interest to the public health field.
For instance, through a better understanding of time-activity pat-
terns, temporal variability, and determinants of exposure, policy
makers can more easily identify effective mitigation interventions,
while epidemiologists could produce more robust associations
with health outcomes (Caplin et al., 2019, Dons et al., 2011, Klepeis
et al,, 2001). Khreis and Nieuwenhuijsen (2017) recently stressed
the need for more refined exposure assessment methods to study
the impact of air pollution on children’s health by incorporating
time-activity and mobility patterns.

In recent years, several scientific contributions investigated
personal exposure of children to EBC, focusing especially on mi-
croenvironments (MEs) and activities (Buonanno et al., 2013, Jeong
and Park 2017; Rivas et al., 2016; Panella et al., 2016; Paunescu et al.,
2016), however, without comprehensively studying temporal pat-
terns and without analysing predictors of personal exposure. This
contribution reports the findings from a two-season intensive
personal monitoring campaign carried out in the city of Milan
involving 73 and 89 schoolchildren during May/June 2018 and
January/February 2019, respectively. Each weekday, from 2 to 5
children were simultaneously monitored allowing the investigation
of within- and between-day variability. Seasonal linear mixed-
effect models were developed highlighting the most important
predictors of the mean and peak (99th percentile) personal con-
centrations and estimated inhaled dose of BC, here presented as
equivalent BC (EBC; Petzold et al., 2013). With this study, we aim to
extend knowledge on personal exposure and inhaled dose of
schoolchildren to air pollution, and particularly BC, by focusing on
temporal patterns (both seasonal and daily), microenvironments
and possible predictors.

2. Materials and methods
2.1. MAPS MI project: study design

This work is part of the Mapping Air Pollution in a School
catchment area of Milan (MAPS MI) project. This was a research
project consisting of three different stages: 1) the analysis and
modelling of the spatial distribution of EBC in the school catchment
area, conducted with a participatory approach (Boniardi et al.,
2019a); 2) an environmental education intervention to raise
awareness and involve schoolchildren, their teachers and parents
in the research process; 3) a two-season personal monitoring
campaign to study the exposure of schoolchildren and validating
previously developed Land Use Regression (LUR) models (Boniardi
et al., 2019b).

The proposal was approved by the ethical committee of the
University of Milan and the elementary school board. We informed
teachers, children, and their parents about the foreseen activities.
In particular, as required by the new General Data Protection
Regulation of the European Union (EU, 2016), children and their
parents were asked to sign three forms: 1) an informed consent
sheet about the project specifically prepared to be understood by
children; 2) an informed consent sheet about the project for par-
ents or legal guardians; 3) a consent sheet to process personal data.

The entire project took place in Milan, Italy. Measurements were
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performed involving 8 to 9-year-old children who attended the
same school located in the north-western part of the city (Fig. 1).
The study area is characterized by a mid to high socioeconomic
background (Petsimeris & Rimoldi, 2015) and is affected by a major
access road into the city (A8 highway), with intense motorized
traffic especially during the morning rush hour (>50,000 veh/day).
In general, in the Metropolitan area of Milan, air pollution is mainly
affected by traffic and heating system sources (ARPA, 2018). In
particular, especially with regards to EBC, biomass heating systems
are important sources of air pollution, especially during winter
(Boniardi et al., 2019a; Hakimzadeh et al., 2020).

2.2. A participatory approach to involve teachers, schoolchildren,
and their parents in the research process

A two-module environmental education intervention was con-
ducted in the selected elementary school. The design of the inter-
vention was first discussed with the Teaching Committee of the
school and planned accordingly. The two modules involved the
third-grade classes of the school during March—April and
October—November 2018 and consisted of playful and experience-
based laboratories following the Investigation, Vision, Action,
Change (IVAC) methodology (Jensen and Schnack 1997). In partic-
ular, the first module (Investigation, Vision) aimed at making
children familiar with the topic, and to investigate EBC in the
neighbourhood, while the second module (Action for Change) was
more focused on how our society can address air pollution issues.
The modules were deliberately performed just before the two
personal monitoring campaigns to increase the level of engage-
ment and the chance to recruit active and aware volunteers. Given
this, the participation in the personal monitoring campaigns was
designed to be a fully-fledged part of the intervention by asking
schoolchildren to become active researchers.

2.3. The design of the personal monitoring campaign

The two-season personal monitoring campaign was carried out
during spring 2018 (April, May and June) and winter 2019 (January
and February). Involved children were asked: 1) to wear a GPS,
model i-gotU GT600 (Mobile Action, Taiwan), 2) to complete a
time-activity diary (supplementary materials, S15) to collect in-
formation on their activities and locations, and 3) to wear a
shoulder bag equipped with a micro-aethalometer AE51 (Aethlabs,
San Francisco, CA) to measure personal exposure to EBC (supple-
mentary materials, S16). To identify possible confounders and other
influencing variables, parents were asked to fill in a questionnaire.
All the operations within the school were carried out in the former
infirmary room of the school. Starting on Monday afternoon and up
to Thursday afternoon, each day, at 4 p.m., a group of 2—5 children
was enrolled in the study, wearing the equipped shoulder bag;
then, after the home-to-school commute of the very next day, be-
tween 8 and 9 a.m., children returned the shoulder bag. During the
afternoon meeting, children were trained on how to handle the
equipment during their personal monitoring: for instance, they
were asked to behave as on a normal day, wearing the shoulder bag
as long as possible, and always to leave it in their proximity; e.g.
when a child went swimming or performed other indoor sports, he/
she was instructed to leave the shoulder bag in the dressing room.
When involved in outdoor activities, children were instructed to
leave the equipment as close as possible in the outdoor environ-
ment. Moreover, children were warned on the importance of
leaving the equipment in an open environment (i.e. not locked in a
wardrobe) and with the inlet tube free from obstruction. In all
cases, the same information was also given to the parents. In
addition, a micro-aethalometer MA200 (Aethlabs, San Francisco,
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Fig. 1. Study area with an approximation of the home locations of the participants (dark red polygons) and the School (black building icon). In the small inset the study area within the city
of Milan is shown. For privacy, home locations were slightly moved from their real addresses. (For interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)

CA) was placed inside the former infirmary room of the school
measuring EBC continuously.

2.4. 24-Hour exposure attribution

Each 24 h EBC personal monitoring period was reconstructed
beginning from midday of the first day until midday of the second
day, as follows:

- From 12 p.m. to 4 p.m. of the first day, the personal EBC con-
centration was estimated using the EBC concentration measured
by the MA200 device placed inside the former infirmary room of
the school (4 h);

- From 4 p.m. of the first day to 8.40 a.m. of the second day, the
personal EBC concentration was measured by the worn AE51
aethalometer (~16 h);

- From the 8.40 a.m. to 12 p.m. of the second day, personal EBC
concentration was estimated using the EBC concentration
measured by the MA200 (~4 h);

Due to technical issues, during the warm season, the site inside
the school was not monitored for about two weeks. To estimate the
missing EBC concentrations, we extrapolated hourly EBC concen-
trations from the urban background station operated by the air
quality network (AQN) of Milan (ID station 10283, via Ponzio 34/6 —
Pascal Citta Studi, ~6 km from the school)(Fig. 1). Hourly correction
factors ranged from 0.75 to 1.25. The latter were similar to the
regression slopes between the MA200 and the AQN site computed
for the available days. The same procedure was applied to the cold
season monitoring campaign as well, even if extrapolation was

necessary for only a few hours. Scatter plots of regression models
are reported in the supplementary materials (S1 and S2).

2.5. Micro-aethalometers and GPSs

Aethalometers are optical devices that estimate black carbon
concentrations by measuring the rate of attenuation (ATN) of a
beam of light, usually at a wavelength equal to 880 nm, through a
filter over which the sampled air is drawn. Concentrations are
finally derived by applying an assumed mass absorption cross-
section (MAC) (Cheng and Lin, 2013). For this reason, BC esti-
mated by the micro-aethalometer is referred to as equivalent black
carbon (EBC) (Petzold et al., 2013). The micro-aethalometer series
are commonly used in EBC personal monitoring assessments
because of their high portability, and adaptability according to
different scenarios. During the two monitoring campaigns, five
AE51s and one MA200 were used with the pump flowrate set to
100 mL/s on a 60-s time resolution to deal with both durability and
high time resolution needs. Polyurethane sampling tubes,
approximately 15 cm long, designed to dissipate electrostatic
discharge from air passing through the tube were used.

The GPS devices used in this study were all i-gotU GT600 (Mo-
bile Action, Taiwan), a highly portable device equipped with a SIRF
Il GPS chipset, a built-in patch antenna, 20 channels, and a sensi-
tivity of —159 dBm. In this study GPS data (300-s and 60-s time
resolution, respectively for warm and cold season) were used to
check and improve the quality of the reported time-activity diaries
(e.g. check timing of a car trip).
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2.6. Data handling

EBC raw data were post-processed by removing all the reported
errors, by smoothing with the Optimized Noise-reduction Algo-
rithm (ONA) (Hagler et al., 2011), by applying correction factors to
account for differences between devices, and by correcting for the
loading effect of the particulate matter collected on the filter
(Virkkula et al., 2007). Besides, to keep the loading effect-related
bias as low as possible, filters were replaced every day, so that
each child corresponded with one individual filter. After the
application of the ONA algorithm, no negative values were found.
After that, the algorithm proposed by Virkkula et al. (2007) was
applied, only to the AE51s data. The compensation factor
Kpersonal = 0.007 was used following Good et al. (2017). Considering
all of this, the following algorithm for the calculation of BC,yrected
starting from the raw AE51s data (BGCrw) Was applied:

BCforrected = BCraw % (1 +ATN x 0.007) x Fi¢

where Fjc represents the regression slopes between MA200 and
AE51s EBC concentrations measured during the four intercompar-
ison exercises conducted pre and post both seasonal monitoring
campaigns. These were performed by running all devices simulta-
neously and next to each other for about 24 h in a fixed urban
background position. The MA200 was the device most recently
calibrated, so it was considered as the gold standard. Again, only
AE51s data were post-processed by applying ONA and Virkkula’s
algorithm applying compensation factors for fixed sites. We applied
compensation factors Kyarm-fixed = 0.0007 and Kcoid-fixed = 0.0054
respectively for the warm and the cold season, following Virkkula
et al. (2007). The final F;c ranged from 0.78 to 1 (supplementary
materials, S3 and S4) and were calculated as the mean value be-
tween the pre- and post-monitoring intercomparisons.

2.7. Contribution of microenvironments to time, daily integrated
personal exposure, and dose

The information reported in the time-activity diary was manu-
ally cross checked with the GPS data to minimize possible
misclassification. Then, each 1-min EBC concentration was associ-
ated to different locations and microenvironments attended by the
children as reported in the diary. The following microenvironments
(MEs) were assigned: a) Home (sleeping), i.e. the time spent at
home during sleeping time; b) Home (other activities), i.e. the time
spent at home, different from sleeping time; c) School; d) Indoor
(other), i.e. the indoor MEs different from School and Home; e)
Transportation, i.e. the total time spent in transport microenvi-
ronments not distinguishing between modes of transport and
including home-to-school commuting; f) Outdoor (other), i.e. all
those outdoor MEs different from transportation. For each child, the
time associated with each ME (Timey,,, min), was used to calculate
the fraction of daily time (1440 min) spent in each ME:

. Ti :
%Timeyg, = % x 100

Afterwards, the exposure to EBC associated to each ME in which
the child spent time from t; to t;, and computed as fttf BCp, 4t (#T% x
min), was used to calculate the contribution of each ME (%BCy, ) to
the daily integrated personal exposure ( ft}]‘m BC4t) by applying the
following formula:
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A similar approach was also used to estimate the daily inte-
grated dose. First, the ME-related dose (Dosep,) (ug xmin), was
estimated by multiplying each 1-min EBC concentration by an
activity-related ventilation rate (VR;) value (U.S.EPA, 2009)(sup-
plementary materials, S6), with j related to each activity performed
in the ME;, and in particular:

t
Doseyg, = JeBCMEi X VRJ‘AI.'

t

Afterwards, each Doseyg, was used to calculate the contribution
of each ME (%Dosepg,) when compared to the daily dose (Doseq449)
by applying the following formula:

o Dosep,
%Dosep, = Dose1aa0 x 100

The information collected from the time-activity diary was
supplemented with a series of assumptions. Children started to
provide information once they left the school (4.30 p.m.), so no
information was available about activities at school. To deal with
this lack of information, we profiled a typical school day by asking
information from the teachers (supplementary materials, S5), and
then we applied this profile to all the children. Also, the sleeping
period, defined here as Home (sleeping), was assumed to be the
same for all children according to a previous study conducted in
Italy (Russo et al., 2007). Finally, the non-dimensional dose in-
tensity related to each microenvironment (Iy,), as already defined
by Buonanno et al. (2012) was computed by using the following
formula:

_ %Dosep,
ME; = %TimeMEi
where %Dosey, is the fraction of dose associated with the ME;,
while %Timey, is the fraction of daily time spent in the ME;.

2.8. Meteorological variables

Wind speed data were collected from the nearest AQN station
(ID station 19005, piazza Zavattari, ~1 km from the school reference
site) (Fig. 1). The hourly atmospheric mixing layer height (hmixdia
in this paper) was extracted by the Emilia-Romagna Regional
Environment Protection Agency (ARPAE) from the Limited Area
Model Analysis (LAMA) data set. This is an initialized local analysis
obtained with the limited area model of the Consortium for Small-
scale Modelling (COSMO) combining the operational analysis pro-
duced by the European Centre for Medium Range Forecasts
(ECMWEF), as a first guess, and observational Global Telecommu-
nication System (GTS) data over the area. The mixing layer height
seasonal hourly boxplots and wind roses are given in the supple-
mentary materials (S9, S14).

2.9. Statistical analysis

R (R Core Team 2013) was used to manipulate and clean data, as
well as to perform the statistical analysis (Wickham et al., 2019;
Wickham, 2009; Bates et al., 2015: Barton, 2009). The non-
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parametrical Mann-Whitney test was used to check differences
between seasons. Since our data were clustered by days, the
different components of the variance (between and within days)
were studied by developing an empty linear mixed model with
only the random effect intercept for each day. The Intra-Class
Correlation coefficient (ICC) was computed as the ratio between
the random effect variance and the total variance, i.e. the sum of the
random effect variance and the residual variance. The result can be
interpreted as the proportion of the total variability explained by
between-days variability. Moreover, random-effect intercept
models were developed to investigate the influence of possible
explanatory variables on mean and 99th percentile personal
exposure, and inhaled dose. Response variables were log trans-
formed to comply with linear modelling assumptions. All the tested
predictors are reported in the supplementary materials (S7). The
variables were collected from different sources and in particular: a)
general information variables (i.e. smoking habits of parents etc.)
and time-activity variables (i.e. transport mode during home to
school commuting) were extracted from questionnaires and time-
activity diaries; b) spatial variables were calculated using Quan-
tum GIS (QGIS Development Team, 2016) based on schoolchildren’s
home addresses.

A forward stepwise procedure was used to select the predictors
and to build the final models. Firstly, all the collected variables were
checked in a single-variable model and only those with p-value<0.1
and having an expected direction of effect were selected. Secondly,
we introduced the variables one by one in an empty model, starting
from the predictors with the highest effect on the Akaike Infor-
mation Criterion (AIC) estimate. For each iteration, the new variable
was retained if the AIC of the new model significantly decreased.
The significance (p < .01) was tested by comparing the previous-
step model AIC with the new model AIC, by means of Analysis of
Variance (ANOVA) test. Marginal and conditional coefficients of
determination (R%y, and R%.) were computed following Nakagawa
and Schielzeth (2013). The leave one out cross validation (LOOcV)
technique was used to test the performance of the models focusing
on Root Mean Square Error (RMSE) and R%. Multicollinearity was
checked with the variance inflation factor (VIF>5). Influential ob-
servations were checked by means of the Cook’s distance estimate
with a threshold equal to Q3+3 x IQR where Q3 is the third quartile
of the estimated values and IQR their interquartile range (Loy and
Hofmann, 2014). When necessary, the observations were dis-
carded, models were checked, and predictors removed if their p
value was >0.1.

In one case, an observation of potential influence close to the
Cook’s D threshold was maintained as it was evaluated to be in the
range of expected values and representing important information
for the explanatory capacity of the model. Finally, residuals were
investigated to check for homoscedasticity and normality.
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3. Results
3.1. General characteristics of the sample

Altogether, 128 children from 6 third-grade classes (age
8—9 yrs), as well as their parents and teachers were involved in the
environmental education intervention. Out of these children, 85
(66%) and 109 (85%) expressed their interest to be involved in the
warm and cold season personal monitoring campaigns, respec-
tively. In the supplementary materials, figure S8 shows the sample
flow chart with exclusion criteria. In particular, a few children did
not confirm their participation due to illness or without explicit
reason (n = 3, n = 11 in the warm and cold season, respectively),
others were excluded from the analysis due to instrumental issues
(n = 6, n = 1) or lack of information on MEs (n = 3, n = 8). The
analysis finally involved 73 and 89 children, and among them, 65
children participated in both monitoring campaigns. Either way,
females were the most represented; children with parents who
smoke were close to a third of the sample; gas cookstoves repre-
sented the most prevalent type of facilities for cooking; and chil-
dren mostly lived less than 1 km away from the school (Table 1).
Moreover, the time-activity pattern showed that children spent
most of their time at home, while only a small fraction of them
frequented other outdoor environments (i.e. public parks, sport
facilities etc.). The average time spent in transport was similar for
both seasons (~47 min), and a significant fraction of time was spent
in cars (about 20 min) (S7). Cooking time was on average about
25 min. Regardless of the season, children mostly went to school on
foot (~50%), but a significant number of them were transported by
cars (~30%). Other modes of transport, mostly equally represented,
were bus, bicycle, motorcycle, and subway. Finally, on average
children were living on the 3rd floor, they were located near streets
with more than 20,000 vehicles per day and with a Sky View Factor
(SVF, portion of visible sky computed in a circular buffer of radius
equal to 25 m around children’s home) of 0.55, indicating a dense
urban environment with street canyons (Middel et al., 2018).

3.2. Personal exposure to EBC and estimated inhaled dose

In Table 2, an overview of the descriptive statistics of personal
exposure to EBC is given (Table 2). The mean + SD personal EBC
concentrations in the cold season were 3.9 + 3.3 pg/m>, a 3-fold
higher than in the warm season (1.3 + 1.5 pg/m>), while it was
2.8 pg/m? (range: 0.2—11.9 pg/m>) when considering overall data.
The total variability of the mean personal EBC concentration was
mostly explained by the between-day component of variance for
both the warm (80%, 95% CI: 65—90%) and the cold season (93%, 95%
Cl: 88—97%). When considering the 99th percentile (representative
of peak exposure), the between-day variability explained respec-
tively 33% (95% CI: 30—60%) and 86% (95% CI: 76—93%) of the total
variability. Regardless of seasonality, transportation was the ME

Table 1

Overall characteristics of the participating children.
Variables (abbreviation) Unit, statistics Warm Cold
Number of participants n 73 89
Gender n (%), Female 42 (58) 46 (52)
Age years, mean + SD 8.5+0.7 9+05
Parental education n (%), University degree 55 (75) 69 (78)
Gas cookstoves n (%) 68 (93) 72 (81)
Biomass heating system n (%) 1(1) 1(1)
Number of children going to school on foot n (%) 38(52) 47 (53)
Distance between home and school meters (m), mean + SD 855 + 700 892 + 613
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Table 2
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Statistics of the seasonal and overall personal EBC concentrations (ug/m?>) according to the different microenvironments (MEs). Personal EBC concentrations are presented as
median, range, arithmetic mean (AM), standard deviation (SD), and geometric mean (GM).

MEs Warm Cold

Overall

Personal EBC (ug/m?)

Personal EBC (ug/m>)

Personal EBC (ug/m?)

n° Median Range”

AM(SD) GM n  Median Range” AM(SD) GM n°  Median Range® AM (SD) GM
Home (other activities) 73 1.2 04-44 14(20) 12 89 27 02-115 32(33) 24 162 17 03-105 24(29) 18
Home (sleeping) 73  0.9° 0.3-33 1.1(06) 09 89 36 02-128 43(32) 30 162 15 0.3-11.7 2.8 1.8
School 73 1.2° 0.4-3.7 14(08) 12 89 33 0.2-12.7 39(29) 29 162 1.9 0.2-11.8 2.8 19
Indoor (other) 34 1.2° 0.4-3.8 1.3(09) 1.2 52 20 0.1-6.4 23(18) 16 86 1.6 0.1-6.0 1.9 14
Transportation 73 2.2° 0.1-225 35(51) 22 89 41 02-229 57(72) 3.8 162 32 0.1-22.7 4.7 3.0
Outdoor (other) 17 09° <0.1-34 1.1(09) 08 15 3.0 0.1-114 33(23) 25 32 1.2 <0.1-8.8 1.8 19
24h exposure 73 1.1° 0.3—4.6 13(1.5) 1.2 89 3.2 02-129 39(33) 28 162 1.7 0.2-1191 28(3.0) 1.8
2 tested differences between warm and cold personal EBC concentrations: p-value always <.001.
b computed as 1 and 99th percentile.
¢ Number of children.
Background AQN site Personal exposure
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Fig. 2. Time trend of daily personal and AQN background site (ID station 10283, via Ponzio 34/6 — Pascal Citta Studi, ~6 km from the school) EBC concentrations. Data are presented
as warm and cold season median values (black line) and Inter Quartile Range (IQR) (red-shadowed area). (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)

linked with the highest mean and maximum personal EBC con-
centrations, while the lowest were related to Outdoor (other) and
Indoor (other) MEs during the warm and the cold season,
respectively.

In Fig. 2, the time trends by season of EBC concentrations
measured by the AQN background site (ID station 10283) and by
children are shown. A strong within-day variability was found with
Morning Rush Hour represented the most critical daily time-
window for EBC concentrations. Lowest values were generally
detected during the afternoon and the night. However, during the
cold season, an evening and night-time increment for both per-
sonal exposure and AQN site data was observed occurring together
with the lowest detected mixing height (supplementary materials,
S9). Trends were generally similar between personal exposure and

AQN background site data, except for the steepness of peaks during
the home-to-school (~8 a.m.) and school-to-home (~4 p.m.)
commuting, especially during the warm season, and the presence
of an evening peak of concentrations during the cold season that
was detected only by the AQN site (Fig. 2).

The same seasonal pattern was found for the inhaled dose, with
average values of 14.0 ug/day (range: 6.5—23.7 ug/day) and 39.2 pg/
day (range: 5.6—83.9 ug/day) during the warm and the cold season,
respectively. The overall mean inhaled dose was 27.8 ug/day (range:
5.6—79.7 pg/day). Finally, the between-day variability explained
78% (95% ClI: 62—89%) and 93% (95% Cl: 87—97%) of the total vari-
ability of the inhaled dose for the warm and cold seasons,
respectively.

Considering the correlation between mean personal EBC
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Fig. 3. Bar plots of the seasonal mean contribution (%) of different MEs to the daily time (time), daily integrated personal exposure (expo), and inhaled dose (dose). The numbers
inside the boxes represent the relative contribution of MEs as percentage. Contributions <2% are not reported. Summary statistics of the relative contributions are reported in the

supplement (S7).

concentration and inhaled dose, Pearson’s r was 0.95 for the warm
season and 0.98 for the cold season.

3.3. Contribution of MEs to time, daily integrated personal
exposure, inhaled dose, and dose intensity

Fig. 3 shows the mean relative contribution of different MEs on
daily time, daily integrated personal exposure, and inhaled dose.
Summary statistics of both absolute values and relative contribu-
tions, as well as the results of the Mann-Whitney test for seasonal
differences are reported in the supplementary materials (S10—S11).
In particular, Home and School were always the main contributors,
together accounting for 92%-86%—77% of the total daily time, per-
sonal exposure and inhaled dose in the warm season, and 92%-
92%—85% in the cold season. Seasonal differences in time-related
pattern were found only for the total time spent in Outdoor
(other) and Indoor (other) MEs that were respectively the lowest
and the highest during the cold season. The relative contribution of
Home (sleeping) on the personal exposure was significantly higher
in the cold season, while it was the opposite for Home (other ac-
tivities), Outdoor (other) and Transportation. The relative contri-
bution on total inhaled dose was significantly higher during the
cold season when considering Home (sleeping) and School, while it
was the opposite for Home (other activities), Outdoor (other) and
Transportation. Finally, regardless of seasonality, Transportation
and Outdoor (other) MEs strongly increased their influence when
passing from time to personal exposure and inhaled dose, showing
the highest dose/time intensity (supplementary materials,
S12—-S13).

3.4. Seasonal predictors of personal exposure to EBC and inhaled
dose

Table 3 shows a summary of selected parameters for the six
seasonal linear random intercept models. All potential predictors
are reported in Table S7, together with their description and basic
statistics. Altogether, the models explained from 71% up to 94% of
the total variability (R?.) of personal exposure to EBC and inhaled
dose. When focusing on the marginal effects of the explanatory
variables (R%,), cold-season models were always the most expli-
cative, except for the p99 warm-season model. In particular, when
focusing on mean personal EBC concentrations (models I and II),
the most predictive covariates (%R?y) were wind speed (Wind_-
speed, 41.7%), the time spent in a car (Time_car, 2.9%), the presence
of parents who smoke (Smoke_parents, 1.7%), and the height of the
home (Home_height, 0.6%) for the warm season, while the atmo-
spheric mixing layer height (Hmixdia, 61.8%), the presence of par-
ents who smoke (0.5%), and the distance of the house to the nearest
road with traffic (Home_distance, 0.5%) were most predictive for
the cold season. With regards to the 99th percentile personal EBC

concentrations (models Il and IV), the most predictive variables
were the time spent in a car (23%), the time spent in home to school
commuting (Time_homeschool, 5.5%), and the presence of parents
who smoke (4.8%) for the warm season, while again the mixing
layer height (24.3%), the time spent in home to school commuting
(3.2%), and the presence of parents who smoke (0.9%) were most
predictive for the cold season. Finally, regarding EBC inhaled dose
(models V and VI), the most explicative covariates were wind speed
(33.3%), time spent in a car (4.1%), and time spent at home
(Time_home, 1.4%) for the warm season, while the mixing layer
height (52.9%), the time spent in outdoor environment (Time_-
outdoor, 1.6%), time spent at home (0.5%), the presence of parents
who smoke (0.4%), and the height of the home (0.2%) were most
explicative for the cold season. Residuals complied with the
normality assumption (Shapiro-Wilk test always >0.05), while a
visual inspection of the studentized residuals versus the fitted
values did not reveal homoscedasticity-related issues. The RMSE of
the models were 2—5 times lower than the log-transformed stan-
dard deviations of the original data. The cross validation showed an
R? ranging from 0.25 to 0.63, and higher RMSE if compared to the
models, but lower than the standard deviations of the log-
transformed original data.

4. Discussion
4.1. Participation, personal exposure to EBC, and dose

The participatory approach helped us to reach a high level of
engagement, with a higher number of participants (+28%) in the
second monitoring campaign compared to the first one. This higher
response rate was probably due to: 1) the increasing level of
engagement following the playful laboratories that were specif-
ically planned right before the two monitoring periods, and 2) the
positive experience of the first monitoring campaign and the
following word of mouth among children and parents.

The overall personal EBC concentration (median = 1.8 pg/m?)
was comparable to the one reported by Donaire-Gonzalez et al.
(2018) for 42 schoolchildren living in the industrial city of Saba-
dell, Spain (median = 1.7 pg/m?), but it was higher than the one
measured by Rivas et al. (2016) for 53 children in Barcelona
(median = 1.1 pg/m?).

In our study, we observed a strong seasonal contrast that was
not found in literature: for instance, Paunescu et al. (2016) involved
98 schoolchildren in Paris, and found a geometric mean of EBC
equal to 1.16 pg/m> and 1.64 pg/m> during warm and cold seasons,
respectively. This is probably associated to the peculiar meteo-
rology of the Po valley region. Indeed, during the cold season, the
whole area experiences frequent stagnation events with thermal
inversions, low atmospheric mixing layer heights, and consequent
increases of air pollution concentrations (Caserini et al., 2017; EEA,
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Table 3
Summary of parameters of the personal EBC mean concentrations, p99, and inhaled dose mixed-effect regression models. Only parameters of the selected covariates are
shown.
Personal EBC mean Personal EBC p99 Potential inhaled dose
Warm (I) Cold (II) Warm (III) Cold (1V) Warm (V) Cold (VI)
R%? 0.82 0.94 0.71 0.90 0.82 0.92
R? n? 0.47 0.63 0.33 0.28 0.39 0.56
C— 0.38 0.61 028 037 0.25 0.60
RMSE? 0.10 0.13 0.21 0.14 0.10 0.12
RMSE 100cv ° 0.20 0.39 0.38 0.39 0.22 0.32
VIF? 1.06 1.03 1.14 1.01 1.07 1.02
Tot observations 66 85 65 87 66 76
Tot groups (days) 18 21 18 22 18 19

estimate (95% CI) estimate (95% CI)

estimate (95% CI) estimate (95% CI) estimate (95% CI)

estimate (95% CI)

Intercept 0.56 ** (0.45; 1.37) 13.26 *** (9.57; 16.95) 0.91 *** (0.69;
1.14)

Hmixdia —6.38 *#** (-2.94;-1.56)

Wind_speed —0.76 ** (—-1.11;-0.42)

Time_home

Time_outdoor

0.0017 **
(1.77 x 1074;0.0031)

Time_car 0.0096 ***
Time_homeschool

0.032)
Smoke_parents

0.080 * (0.010; 0.15)  0.088 * (0.0098; 0.17)

Home_height —0.0044 (—-0.0087;-
1.59 x 107%)
Home_road_distance —0.0024 * (—0.0045;-
3.08 x 107%)

(0.0058; 0.013)
0.016 * (0.0011;

0.21 *(0.054; 0.36) 0.11 ** (0.030;

7.81 #*x (3.96;  3.14%** (2.70; 3.49) 13.82 *** (10.02; 17.59)

11.66)
—2.52 ** (—4.17;- —1.85 *** (~2.56;-1.14)
0.86)
—0.68** (—1.06;-0.027)
—3.35 x 1074 (-8.14 x 107%- —=5.61 x 1074 (-0.0011;-
5.57 x 1075) 1.55 x 1079)
0.16 **
(0.058; 0.26)
0.0018* (7.97 x 10-4,0.0039)
0.012 ***

(0.0062; 0.018)
0.077 (0.0023; 0.15)
0.19)

*p < .05, **p < .01, ***p < .001.

3 R?. = conditional R?, R%; = marginal R?, R? [oocy = R? of the leave one out cross validation, VIF = highest Variance Inflation Factor, RMSE = Root Mean Square Error.

2018) (supplementary materials, S9 and S14). This finding is
confirmed by the high winter personal EBC concentration
(median = 3.8 pg/m?) found by Buonanno et al. (2013) in 103
schoolchildren living in a similar environment (Liri valley) (ARPA
Lazio, 2009). Given this picture, it is likely that meteorological
variables are the main cause of the overwhelming contribution of
the between-day component of variance on the total measured
variability of personal EBC concentration.

Moreover, the correlation between average personal exposure
and dose was very high (Pearson’s R = 0.95 and 0.98). This result
was expected since only a very small percentage of time was spent
for those activities (transportation, sport etc) that could signifi-
cantly increase the intake of air pollution. However, this could also
be a consequence of the simplification we made by using standard
ventilation rates and a small set of activities.

4.2. MEs contribution and dose intensity

In our study, the relative contribution of School and Home MEs
to the daily integrated personal exposure to EBC (Fig. 3) is higher
compared to previous studies. We found that school and home MEs
contributed 58% and 34% to the personal exposure, while this was
50% and 32% in Barcelona (Rivas et al., 2016), and 50% and 22% in
Seoul (Jeong and Park 2017). This is probably linked to the greater
portion of time that our children spent in these environments.
Additionally, a night-time peak was observed in Milan in the cold
season. This phenomenon was likely linked to the combined action
of traffic and heating system sources, as well as to the strong
nocturnal thermal inversion that often occurs in the area (Vecchi
et al, 2007), favouring the accumulation of pollutants in the
lower layers of the atmosphere. This trend appears stronger for the

AQN background site than the personal exposure data (Fig. 2)
suggesting that outdoor EBC can only partially filter into indoor
environments. On the contrary, the transportation related contri-
bution was very small if considering time (3%), but much higher
when focusing on exposure (7%) and dose (11%). The significant role
played by transportation, especially focusing on peaks of exposure
and dose (Fig. 3, supplementary materials S12—S13), is due to the
proximity to the traffic source and the high ventilation rate asso-
ciated with active modes of commuting (Zuurbier et al., 2009; Int
Panis et al., 2010). These findings stress the urgency of mitigation
actions to reduce traffic-related air pollution in the city of Milan.
Finally, the lowest contributions and EBC concentrations were
generally linked to indoor (other) and outdoor (other) MEs. This can
be explained by the very restricted amount of time that children
spent in these MEs, and by the time span of attendance that cor-
responded to the least critical daily time-window for EBC concen-
trations (late afternoon, Fig. 2).

4.3. Predictors of personal exposure to EBC and inhaled dose

Our most performant models were those focusing on mean
exposure and dose for the cold season. In these cases, the great
majority of the measured (or estimated) variability was explained
by meteorological variables, and especially by the mixing layer
height (hmixdia). This variable was reported to be one of the most
important determinants of ambient concentrations of particulate
matter (Miao et al., 2019), especially in the Po valley region (Bigi
and Ghermandi 2016). Previously, Weichenthal et al. (2008), ana-
lysing personal exposure to ultrafine particles in transport micro-
environments, found a strong collinearity between mixing layer
height and wind speed, finally taking the latter in their regression
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analysis. Similarly, in our work the mixing layer height and wind
speed were collinear, but only during the cold season (R > 0.8).
However, since in this case the first was the most predictive, wind
speed was not retained.

According to our findings, dose-related models were similar to
the mean exposure models, except for the significant role played by
the time spent at home (Time_home) and the time spent outdoor
(Time_outdoor). They both suggest that the longer children stay
outdoors, the more they increase their daily EBC dose. This is
reasonable if we consider that children in outdoor MEs were
involved in activities which imply high ventilation rates. Other
important predictors that explained mean exposure and inhaled
dose were the height of the home (Home_height) and its distance
to the nearest road (Home_distance). This is probably linked to the
peculiar atmospheric conditions that do not allow the dispersion of
pollutants and thus increase the impact of local sources, such as
traffic in proximity of the buildings.

Furthermore, in our study transportation-related variables were
important predictors too, explaining the 99th percentile of personal
EBC concentration. In this regard, it is important to highlight that
peaks of exposure are particularly interesting when considering the
trigger role that they can play on short-term health effects (Zhou
et al., 2017). In particular, the important role played by the total
time spent in a car (Time_car) was expected, since it is known that
transportation MEs are more likely to cause peaks in personal
exposure (Dons et al., 2019) and car trips may have a higher impact
on personal EBC concentrations (De Nazelle et al., 2017; Dons et al.,
2012). Additionally, the role of the time spent for home-to-school
commuting (Time_homeschool) appears important as well, also
pointing out the critical impact of traffic rush hours on children
personal exposure to EBC. Finally, it is important to highlight that
although we tested different transport-related variables, including
time spent walking and other modes of home-to-school
commuting, only the time spent in a car entered the models and
was significantly linked to an increase of personal EBC concentra-
tion, especially when considering the warm season. These findings
indicate that mitigation actions to reduce children’s exposure to air
pollution could focus on designing low-traffic home-to-school
routes, and on promoting the use of non-motorized modes of
transport. Moreover, our models confirm that environmental to-
bacco smoke (ETS) still is a matter of concern with regards to the
health of children (Winickoff et al., 2009; Roberts et al., 2017).

In general, since in our dataset the between-day component of
variance was much higher than the within-day variance, the
overwhelming impact of meteorological variables was expected.
These findings suggest that air pollution contributions from long-
range transport and the urban background play a fundamental
role in determining personal exposure to EBC in Milan. Further-
more, since temperature inversions and stagnation events in the Po
valley are projected to increase due to climate change (Caserini
et al., 2017), a drastic reduction of emissions is needed, and this
calls for ambitious policies toward environmental protection in
Northern Italy. Besides, to better understand the impact of local
scale predictors, researchers should focus on how to maximize
variability between participants and at the same time lowering the
impact of urban and regional air pollution background, and time-
related variability inside the sample.

4.4. Strengths, limitations, and further research

In our study a wide range of covariates was tested to explain
schoolchildren’s personal exposure to EBC, including meteorolog-
ical conditions, traffic, personal behaviour, home characteristics,
and family habits. Moreover, a special focus on seasonal patterns
was given. This was achieved by recruiting schoolchildren
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attending the same school and living in the same area in Milan, in
two seasonal monitoring campaigns lasting 5 weeks per season. It
is possible that this intensive study design helped us in lowering
the bias linked to the temporal and spatial variability that likely
occur in similar experiences.

Our study has some limitations. For instance, we monitored only
one working day for each season per child, and this may not be fully
representative of the personal exposure profile. The study focused
on a single pollutant, EBC, especially linked with traffic and biomass
combustion; this confines the representativeness of the study to
personal exposure to combustion-related air pollution. To deal with
the lack of School EBC concentration data during the warm season,
a significant number of EBC extrapolations have been made. By
estimating about 14% of overall data, it is likely that an error was
introduced, although the procedure we used to estimate missing
data should have limited its magnitude. The monitor used to
attribute EBC for each child while at school was placed in a room at
ground level, while classrooms were located at the first floor.
However, in all cases, windows overlooked the same courtyard
reducing possible biases linked to the proximity of traffic. More-
over, some assumptions to complete the 24-h monitoring periods
were made; in particular, time spent at the playground during
school time was not considered, and an equal period of sleep was
attributed to all the children due to lack of information in the time-
activity diary. Especially focusing on the lack of data about the time
spent in the playground, it is likely that in our study we under-
estimated personal EBC concentrations (and inhaled dose) during
school-time since higher concentrations usually occurred outdoors,
especially during the cold season, and children likely have higher
ventilation rates there compared to activities inside school. Finally,
most selection bias was avoided, as the recruitment of volunteers
after the educational intervention reached an overall response rate
of 77%, so it is likely that the sample was representative of the study
area.

A possible next step for this kind of research should be diver-
sifying the engaged schoolchildren and the study areas trying to be
more representative of different socio-economic backgrounds. Be-
sides, it would be interesting to investigate personal exposure of
children using a sociological approach, by involving more closely
children’s parents and studying how their perceptions, knowledge
and daily routines affect their children’s exposure (Da Schio, 2020).
Moreover, to study more in depth the determinants of exposure
variability on a local scale, more efforts should be made in the
attempt to disentangle the contribution of possible predictors from
the overwhelming effect of meteorology by maximizing the within-
observations variability and lowering the influence of regional and
urban air pollution background. These next steps could help iden-
tifying new pathways toward more effective mitigation
interventions.

5. Conclusion

In summary, our study aimed at extending knowledge on per-
sonal exposure and inhaled dose of schoolchildren to air pollution,
and particularly EBC by focusing on seasonality, MEs and possible
predictors. Our findings suggest that seasonality is linked to
different patterns of personal exposure and dose, and especially to
a different contribution of microenvironments. Mixed-effect
models indicate that predictors vary depending on season and
type of response variable (i.e. mean or peak exposure, or inhaled
dose). In general, meteorological variables played a fundamental
role in explaining variability, probably masking the real impact of
other (local) predictors. Nevertheless, home location, transport and
ETS-related predictors entered the model as well, suggesting that
these variables could be important to refine exposure assessment
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methods in epidemiology. Besides, our findings suggest that
maximizing variability between participants, lowering time-
related variability inside the sample, and disentangling local and
background air pollution, could help to better inform the effect of
local mitigation actions. However, by highlighting the role of traffic
rush hours and transport-related microenvironments on personal
exposure, as well as by pointing out the role of home-to-school
commuting in explaining peak exposure, our study suggests that
reinforcing traffic-mitigation policies on a local scale could be an
effective strategy to lower personal exposure to EBC and inhaled
dose of children in the city of Milan.
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Main findings

Seasonal patterns in personal exposure to equivalent black
carbon in elementary schoolchildren in the city of Milan were
predicted by meteorological variables, trafficc and parental
smoking.
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